If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-23z+30=0
a = 3; b = -23; c = +30;
Δ = b2-4ac
Δ = -232-4·3·30
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-13}{2*3}=\frac{10}{6} =1+2/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+13}{2*3}=\frac{36}{6} =6 $
| 2x-5+x+15+2x+15=180 | | 1/3=1/6(m-9) | | C=37.55+0.25x | | 2d+12=d+3 | | 8(2x+3x+2)=-4+124 | | 14+4c=20+3c | | 7x+5(-4x-19)=35 | | 6+12b-3•6b=b | | 3(4x+14)=10x-2x+14 | | 8.5x+9.3-8.3-14.54=8.2x-9.4 | | 21+2.50m=4m | | .6d+1.8=3d | | 12x+42=8x+14 | | x2+4x-19=5 | | 24x^2-26x-28=0 | | 30-1.50p=26-0.50p | | 10p-1=3p+40 | | 5x-40=9 | | F(x)=5x^2+40x+9 | | 28=x-5-7 | | 5x-49=0 | | 7x+8=4×+2 | | x(x−5)=2x−4x+10 | | 30y=-60 | | 15=-k | | 3x+8=x+26 | | 2+r=12 | | 6y-5=y+40 | | 5x+6=9x+11 | | 24=2x–99-2x=24 | | 2(y+12)-6(y-3)=14 | | -4(5x-4)=13-6(3-2x) |